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Abstract 
This paper presents a finite element based framework for direct simulation of cyclic fracture in 
steel components and connections with application to predict failure and collapse of steel 
structures. Collapse and failure of steel structures subjected to extreme loads, such as seismic 
loads, often is preceded by large inelastic deformations that could lead to fracture in components 
and connections. However, direct simulation of damage and fracture in the performance 
assessment of steel structures is challenging and it has not been a common practice in prior work. 
The framework presented combines a plasticity model for large deformations that captures plastic 
work stagnation and the Bauschinger effect, with a damage model to simulate fracture initiation, 
propagation and failure through an element deletion strategy. The damage model includes the 
effects of non-proportional loading and plastic strain history in the fracture initiation and 
propagation process. Calibration of the model parameters is discussed for common grades of 
structural steel, weldments and bolts using typical material tests. The framework capabilities are 
validated against experiments including ancillary material tests, steel components, and 
subassemblies of steel structures that experienced fracture subjected to monotonic and cyclic 
loading. This proposed framework provides a robust and valuable tool for stability analysis and 
simulations of collapse triggered by fracture in components and connections of three-dimensional 
steel structures subjected to extreme loads.  
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1. Introduction 
Failure and collapse of steel structures subjected to extreme loads, e.g., seismic loads, often is 
preceded by large inelastic deformations that could lead to fracture in components and 
connections. The importance of understanding the damage progression preceding fracture in 
components and connections is highlighted by failure cases such as the Alexander Kielland drilling 
rig collapse in 1980 (Almar-Naess et al. 1984), the structural failures triggered by fracture in steel 
components and connections observed after the 1994 Northridge and 1995 Kobe earthquakes 
(Chung et al. 1996, Cooper et al. 1994, Mahin 1998), among many other cases. Moreover, these 
failure cases highlight the importance of accounting properly for fracture in the analysis and design 
of steel structures subjected to extreme loads. However, simulating fracture in steel structures is 
challenging because it requires analysis tools not readily available to most practicing engineers.  
 
Accurately simulating steel structural systems where damage localization and fracture may occur 
at several locations requires a strategy that generally involves fine-grained computational finite 
element meshes. This presents limitations on the fracture models type used where computational 
time and accuracy of the simulated fracture process are competing factors that limit the options to 
widely include fracture analyses. In recent years, a variety of approaches to simulate fracture in 
steel structures have been proposed, including traditional linear elastic (LEFM) and elastic-plastic 
fracture mechanics (EPFM) formulations that rely on stress intensities factors ܫܭ and ܫܬ (Rice 1968, 
Rice and Rosengren 1968, Hutchinson 1968, Rooke and Cartwright 1976, Kumar et al. 1984), void 
growth-coalescence based models (e.g., Kanvinde et al. 2007, Xue et al. 2008, Bai et al. 2008, Cao 
et al. 2014, Wen et al. 2016a-b,), and extended finite elements models (XFEM) that uses enriched 
elements to model propagation of discontinuities, e.g. fractures (Moës 1999, Fries and Belytschko 
2010). Kanvinde (2016) summarizes some of such approaches popular in the context of civil 
engineering steel structures and discusses their advantages and drawbacks. This paper introduces 
a cyclic fracture framework developed for metals to simulate damage leading to fracture in steel 
components, connections and subassemblies. The framework implements a continuum damage-
plasticity model for large deformations that accounts for the effects of stress triaxiality, Lode angle, 
non-proportional loading, strain history effects, and fracture energy dissipation. An element 
deletion strategy is adopted to simulate fracture propagation. The proposed framework enables to 
simulate localized damage and fracture in components and connections that could trigger collapse 
in steel structures using mesh densities that are typical of high-fidelity structural analyses. 
 
2. New Cyclic Fracture Model for Metals 
The process leading to load-carrying capacity loss due to fracture in the context of finite elements 
was implemented using a hybrid approach that combines a damage-plasticity model for large 
plastic strains and an element deletion strategy. The plasticity model by Yoshida and Uemori 
(2002) is coupled to a damage model derived from the models proposed by Wen and Mahmoud 
(2016b) and Hillerborg (1976) to simulate the material plastic stress-strain response including 
softening of the response due to fracture. 
 
2.1 Coupled Damaged-Plasticity Model for Large Plastic Strains 
The Yoshida-Uemori (YU) model is capable of simulating the cyclic behavior in metals 
experiencing large plastic strains, isotropic and kinematic hardening, the Bauschinger effect, and 
plastic work stagnation. Furthermore, the YU model ensures stabilization of the plastic hardening 
for cyclic loading with constant strain amplitudes (Yoshida and Uemori 2002; Jia et al. 2014), a 
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shortcoming present in popular models with combined kinematic-isotropic hardening, e.g., the 
model by Lemaitre and Chaboche (1990). The YU model employs three coupled surfaces to 
describe the large-strain cyclic behavior of metals. A constant-size yield surface with constant size ݋ݕߪ is coupled to a bounding surface of varying size ܴ to control the isotropic and kinematic 
hardening. The overall hardening is represented by the isotropic hardening of the bounding surface 
while the kinematic hardening of the yield surface describes the Bauschinger effect seen during 
loading reversals. A strain-based memory surface of size ݎ is used to simulate the plastic-work 
hardening stagnation and yield plateau. The three surfaces are described by: 
 ௒݂(ߪ, (ߙ = ቂଷଶ (ܵ − :(ߙ (ܵ − ቃଵ/ଶ(ߙ − ௬௢(1ߪ − ߱) = 0  [yield]   (1a)

஻݂(ߪ, (ߚ = ቂଷଶ (ܵ − :(ߚ (ܵ − ቃଵ/ଶ(ߚ − ܴ(1 − ߱) = 0  [bounding]   (1b)݃ఌ൫ߝ௣, ൯ݍ = ቂଶଷ ௣ߝ) − :(ݍ ௣ߝ) − ቃଵ/ଶ(ݍ − ݎ = 0  [memory]   (1c)

 
where ܵ = deviatoric stress tensor, ߙ = yield surface center, ߚ = bounding surface center, ߱ = 
damage variable to control the strain-stress response softening due to fracture, ݌ߝ = plastic strain 
tensor, and ݍ = memory surface center. The kinematic hardening of the yield and bounding 
surfaces is coupled through the backstress ߚ−ߙ = ߠ that describes the relative kinematic motion 
between both surfaces. The evolution rules of ߚ and ߠ are defined by:  
ߠ݀  = ଶଷ ௣ߝ݀(ܥܽ) − ߚ݀௣̅  (2a)ߝ݀ߠଵ/ଶ(ߠ̅/ܽ)ܥ = ଶଷ ௣ߝ݀(ܾ݉) − ௣̅  (2b)ߝ݀ߚ݉
 

where ߝ௣̅= equivalent plastic strain; ܽ = ܴ−ߠ̅ ;݋ݕߪ = [(3 2⁄ :ߠ(  and ݉ are model ܾ ,ܥ ଵ/ଶ; and[ߠ
parameters. The size of the bounding surface ܴ is a function of the equivalent plastic strain and 
has an initial size ܴ ܴ The evolution rule for .݋ݕߪ<݋  follows a modified version of the rule proposed 
by Zaverl and Lee (1978) that defines the increment ܴ݀ in terms of the saturation stress ܴݐܽݏ and a 
hardening linear term ݈݉ introduced by Jia et al. (2014). The term ݈݉ accounts for experimentally 
observed trends where the true stress does not saturate but continues increasing approximately 
linearly at large plastic strains. The expression for ܴ݀ is 
 ܴ݀ = (ܴ݉௦௔௧݁ି௠ఌത೛ + ݉௟) ௣̅ (3)ߝ݀
 
The memory surface proposed by Ohno (1982) is adopted to memorize the hardening history, and 
it determines the non-isotropic hardening portion of the bounding surface. Non-isotropic hardening 
of the bounding surface occurs when the current plastic strain is inside the memory surface. Thus, ܴ݀ = 0 when (ߝ௣ − :(ݍ ௣ߝ݀ ≤ 0 and ݃ఌ(ߝ௣, (ݍ < 0. The evolution of ݎ and ݍ are given by 
ݎ݀  = ଶ௛ଷ௥ ൫ߝ௣ − :൯ݍ ݍ݀௣̅  (4a)ߝ݀ = ଶ(ଵି௛)ଷ௥మ ൫ߝ௣ − :൯ݍ ௣̅  (4b)ߝ݀
 
where ℎ is a material parameter. The yield plateau is simulated by assuming an initial memory 
surface size ݎ௢ = ௣̅ߝ and 0.001݉ respectively for ܥand ݉ equal to 0.001 ܥ ௅̅ and settingߝ ≤   .௅̅ߝ
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2.2 Damage Leading to Fracture Model 
Damage is implemented in two stages: the first one corresponds to damage accumulated that 
triggers fracture initiation, and a second stage where damage accumulation results in weakening 
of the material stress-strain response associated to the evolution of fracture. Here damage is 
defined as the material’s loss of deformation capability, and it is considered a self-similar process 
on any deviatoric proportional path for any hydrostatic pressure (Xue 2007). Thus, damage is 
expressed as a function of the plastic strain to fracture strain ratio, and the hydrostatic pressure and 
deviatoric stresses effects are assumed independent of each other. The nonlinear history and strain 
based damage evolution proposed by Wen and Mahmoud (2016b) is used as a template to 
implement the damage leading to fracture initiation, and an enhanced version of the Hillerborg’s 
(1976) approach is proposed for the damage that results in softening of the material response due 
to crack opening. Each part of the proposed model are described next. 
 
2.2.1 Damage to fracture initiation 
The damage accumulated that triggers fracture initiation is defined as a function of the equivalent 
plastic strain and the current stress state. A state variable ݅ܦ is introduced to quantify the damage 
accumulated up to the fracture initiation point, where 0 = ݅ܦ for no-damage, and 1 = ݅ܦ for fracture 
initiation. ݅ܦ is not coupled to the plasticity model and its purpose is to trigger the softening of the 
material stress-strain response. The incremental form for ݅ܦ is 
௜ܦ݀  = ݁௖భ఑ ∙ ܿଶ ൬ߝ௣̅௧ߝ௜̅ ൰௖మିଵ ௣̅ (5)ߝ݀

 

where ܿ1, ܿ2 = material constants, ߝ௣̅௧ = :௣ߝ(2/3)] ௜̅ߝ ,௣]ଵ/ଶ is the transient equivalent plastic strainߝ  is the fracture initiation strain surface, and ߢ = the parameter that accounts for the non-
proportional and loading history effects in the damage accumulation process. The commonly used 
linear damage accumulation model is recovered when ܿ1 = 0 and ܿ2 = 1 in Eq. 5 (Bai and 
Wierzbicki 2008, Bai 2008). 
 
2.2.2 Fracture propagation model 
The damage process that drives the material strain-stress response softening is based on the 
assumption that the material losses load-carrying capacity as fracture plastic work accumulates 
after fracture initiation. Failure of the material is assumed when the fracture plastic work exceeds 
the material’s fracture energy capacity ݂ܩ. The fracture energy expression is defined in terms of 
the characteristic length ܿܮ to reduce mesh dependency as proposed by Hillerborg (1976). Damage 
after fracture initiation is assumed to increase exponentially with the fracture plastic work, and 
includes the non-proportional and history loading effects as follows 
 ݀߱ = ℋ(ܦ௜ − 1) ∙ ௖భ఑1݁ߣ − ݁ିఒ ∙ ௙ܩ௖ܮതߪ ∙ ݁ିఒ ׬ ൫ఙഥ௅೎/ீ೑൯ௗఌത೛ഄത೛ഄത೔  (6)

 
where ℋ(·) = Heaviside function, ߣ = parameter set to 1, and ݂ܩ is a fracture energy surface 
described in the next section. The damage variable ߱ is coupled to the YU plasticity model to 
simulate the material load-carrying capacity loss. When the load-carrying capacity is exhausted at 
an integration point (߱ = 1), this is deleted, and once all integration points associated to an element 
are deleted, the element is removed. 
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2.2.3 Fracture initiation strain surface ࢿത࢏ 
The fracture initiation strain surface ߝ௜̅ is given by the expression 
௜̅ߝ  = ଴̅ߝ ∙ ݁ି௖యఎ ∙ (1 + ௖ర) (7)|ߦ|ߛ
 
where the exponential term represents the stress triaxiality ߟ = തߪଵ/3ܫ  effect, and the term in 
parenthesis is the influence of the Lode angle parameter ߦ = 1 − (2/π) cosିଵ[(27/2)ܬଷ/ߪതଷ], with ߪത =  ଴̅ isߝ are stress tensor invariants. In Eq. 7 3ܬ and 2ܬ,1ܫ ଵ/ଶ being the von Mises stress, and(ଶܬ3)
the fracture initiation strain for the generalized shear or torsion loading case (i.e., 0 = ߦ = ߟ), ߛ is 
the ratio of fracture strain of the generalized shear loading case (0 = ߦ) to the generalized 
tension/compression loading case (±1 = ߦ), and ܿ3 and ܿ4 are material parameters that control the 
surface’s curvature. Fig. 1 illustrates the influence of each parameter in Eq. 7. Different 
coefficients can be chosen to represent the behavior of different materials. For example, a material 
more ductile in tension (1 = ߦ) than in shear (0 = ߦ), ߛ and ܿ4 can be set to provide a surface to 
reflect such nature, e.g., blue curve in Fig. 1c. Now, if a material is more ductile in pure shear than 
in tension, a value of 0 ≥ ߛ, e.g., the green curve in Fig. 1b, or any curve with ܿ4 ≥ 0 in Fig. 1c 
could be adopted. ߝ௜̅ is also symmetric about the axis defined by 0 = ߦ.  
 
The surface ߝ௜̅  represents the fracture initiation strain for the proportional monotonic loading 
condition, where fracture initiation, determined by Eq. 5, starts when the equivalent plastic strain 
equates the value given by Eq. 7. For non-proportional loading cases such as cyclic loading, Eq. 7 
acts as a weighing function in the incremental damage to fracture initiation function to include the 
effects of changing triaxiality and Lode angle parameter. The fracture initiation surface proposed 
here is chosen for its simplicity and because it can represent a large family of surfaces as suggested 
in Fig. 1, including surfaces previously proposed by other authors (e.g., Bai and Wierzbicki 2008 
and 2009, Wen and Mahmoud 2016a, Xue 2007, Xue and Wierzbicki 2008, Cao et al. 2014). 
 

 
Figure 1: Effects of parameters ܿ3 (a), ܿ4 (b) and ߛ (c) in the fracture initiation strain surface. 

 
2.2.4 Fracture energy surface ݂ܩ  
The fracture energy surface proposed here is based on the assumption that the energy dissipated 
after fracture initiation is directly related to the stress triaxiality and Lode angle parameter at the 
tip of fracture. The function adopted to express this relationship is the same as that of the fracture 
initiation surface, thus 
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௙ܩ = ௙௢ܩ ∙ ݁ି௖యఎ ∙ (1 + ௖ర) (8)|ߦ|ߛ
 
with ܩ௙௢  = the fracture energy for generalized shear or torsion. Adopting this definition of ݂ܩ 
accounts for the differences in the fracture process when loading in pure tension, pure shear or any 
other mixed stress state. 
 
2.2.4 Non-proportional and history loading parameter 
The non-proportionality loading effects are partially accounted for by the including the triaxiality 
and Lode angle parameter dependencies in the fracture initiation strain (Bai 2008) and fracture 
energy surfaces. However, for complex load histories (e.g., reverse cyclic loading) an additional 
parameter ߢ is required to describe the effects on damage accumulation of the previous non-
proportional and cyclic loading history. This parameter ߢ accelerates or deaccelerates the damage 
accumulation rate for the cases of cyclic and non-proportional loading. The expression for ߢ is 
given by 
ߢ  = න ௣̅ఌത೛଴ߝ݀߯  (9)

 
with ߯ = sign൫Σ௜ୀଵଷ Σ௝ୀଵଷ ௜௝൯ߪ ൤	1 − :ߪ ൨ (10)‖ߙ‖‖ߪ‖ߙ

 
where ߯ ∈ [−2,2] describes the non-proportionality state and changes in loading direction. Both ߯ 
and ߢ are zero for monotonic proportional loading cases and non-zero otherwise. Similar 
parameters have been proposed by Bai (2008), Wen et al. (2016b) and Algarni et al. (2017). An 
example of the evolution of parameters ߯ and ߢ is illustrated in Fig. 2 for a cyclic tension-
compression with constant amplitude case. In this example ߯ reaches a value of −2 corresponding 
to a change in loading direction from tension to compression and as cyclic loading continues, ߯ 
fluctuates between −2 and 2. Parameter ߢ starts from zero, then decreases to negative values in 
the first reversal and fluctuates between negative and positive values. Fig. 2 also shows an example 
for a case dominated by cyclic shear stresses, where ߯ behaves less like a pulse and varies 
throughout each half cycle. 
 

 
Figure 2: Example of the history parameters evolution ߯ (a) and ߢ (b). 
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2.2.5 Non-damage accumulation (cut-off) region 
A cutoff region is defined based on the assumption that damage only accumulates for stress states 
with maximum positive principle stresses, i.e., 0 ≤ 1ߪ (Cockcroft et al. 1968, Brozzo et al. 1972, 
Oh. et al. 1979, Wen et al. 2016b). Thus, no damage is accumulated when 0 ≥ 1ߪ, or in terms of 
stress triaxiality and Lode angle parameter, ݀0 = ݅ܦ if  
ߟ  ≤ −2/3		cos	[6/ߨ	ߦ) − 1)] (11)
 
2.3 Integration of the Constitutive Equations 
The cyclic fracture model is implemented as a user material using an implicit staggered stress 
integration algorithm. The backward Euler discretization and the successive substitution method 
are used to find the current stress 1+݊ߪ as a function of the increments in total strain ݀1+݊ߝ and the 
damage increment ݀߱݊+1 as follows 
௡ାଵߪ  = [1 − ߱௡ାଵ]ℂ௘: ௡ାଵ௘ߝ = ߮௡ାଵℂ௘: ௡ାଵߝ] − ௡ାଵ௣ߝ ]   

                     = ߮௡ℂ௘: ௡௘ߝ] + [௡ାଵߝ݀ − ߮௡ℂ௘: ௡ାଵ௣ߝ݀ + ݀߮௡ାଵℂ௘: ௡ାଵ௘ߝ  
(12)

 
where ߮ = 1 − ߱, ℂ௘= undamaged elastic isotropic stiffness tensor, and ߝ௘ = elastic part of the 
total strain tensor. In the staggered integration algorithm, first, a trial elastic stress (first term in 
Eq. 12) is calculated based on the material status at the ݊-step, then the plastic correction (second 
term in Eq. 12) is performed in the absence of damage evolution (݀߱݊+1 = 0) to find ݀ߝ௡ାଵ௣ , finally 
the damage correction step (third term in Eq. 12) is performed under frozen plasticity conditions. 
An adaptive sub-stepping algorithm was also implemented to improve convergence for large strain 
increments. The resulting algorithm is robust with CPU times faster to that of a classical two steps 
elastic-predictor/plastic-damage corrector schemes (Cao 2014, Soyarslan et al. 2010). 
 
3. Model Calibration Procedure 
Calibration of the proposed model parameters for a particular material is achieved in two steps: 
(1) calibration of the modified YU plasticity model, and (2) calibration of the fracture initiation 
and propagation models. In both steps, parameters are determined using a global optimization 
algorithm that minimizes the weighted error between experimental and simulated load-
deformation responses.  
 
Monotonic tension and cyclic tension-compression tests of classic steel coupons, circular notched 
bars, or grooved plates are specimens recommended to calibrate the YU model, see Fig. 3a. To 
calibrate the fracture initiation and propagation models test data from specimens that exhibit 
different triaxiality and Lode angle parameters ranges up to fracture is key. Fig. 3a illustrates 
typical specimens used to characterize fracture and where the projection of their fracture initiation 
strain onto the ߦ–ߟ plane for the monotonic loading case falls. A set of these specimens can provide 
enough information to calibrate the proposed model. Note that cyclic tests are necessary to 
calibrate the coefficients associated to the non-proportional and loading history parameter.  
 
Parameters for structural steels A572 and A992 both Grade 50; weldments E70T6 and E71T8-K6; 
and A490 bolts were calibrated using monotonic and cyclic tests reported by Smith et al. (2014), 
Kanvinde et al. (2004), Myers et al. (2013), Deng et al. (2003), Ng et al. (2002), and Kulak et al. 
(1986). An example of the fracture initiation strain surface calibrated for A572 grade 50 structural 
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steel is shown in Fig. 3b. The projection of the fracture initiation strain onto the ߦ–ߟ plane for the 
monotonic tests used in the calibration is also shown in Fig. 3a. The calibrated parameters are 
listed in Table 1. 
 

 
Figure 3: ߟ vs. ߦ plane with typical specimens used for fracture characterization (a), and  

fracture initiation strain surface for A572 steel (b). 
 
4. Validation Examples 
The framework capabilities are validated against ancillary material tests, steel component tests, 
and subassemblies of steel structures that experienced fracture under monotonic and cyclic 
loading. The experimental load-deformation responses and fracture patterns were compared to 
simulations carried out using ABAQUS/Explicit (2014) that included all relevant specimen and 
tests setup details. Coupon tests data provided in the corresponding tests reports where used to 
calibrate the Yoshida-Uemori plasticity model, while the fracture parameters were calibrated from 
the data sets described in the previous section, see Table 1. 
 
4.1 Ancillary Fracture Tests of A572 Steel Components 
A set of material tests carried out by Kanvinde et al. (2004) were used to validate the fracture 
parameters for A572 Grade 50 steel. These included two monotonic plate pull tests, one plate with 
bolt holes, and the other plate with had a reduced cross-section. Also, two compact tension 
specimens were included, one loaded monotonically and another subjected to three cycles and then 
pull in tension.  
 
The simulated load-deformation results in Fig. 4 show that the cyclic fracture model predicts 
accurately the softening of the global response due to fracture. Further, the fracture initiation 
location and propagation patterns resemble very well that reported in the experiments. For the pull-
plate specimen with holes, fracture initiated at the hole surface close to the straight edge side, while 
for the plate with reduced section, fracture initiates at the center of the narrowest reduced cross 
section. The same fracture initiation locations were observed in the simulations, see Fig. 4a. For 
the two compact tension specimens, fracture started at the notch mid-thickness center of the notch 
and propagates faster in the center than the region closer to the side surfaces. Similar pattern was 
observed in the simulations, see Fig. 4b. 
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Figure 4: Responses and fracture pattern for selected tests for A572 steel. 

 
4.2 Fracture in Steel Moment Frame from Column Removal 
Two steel moment frames tested by Sadek et al. (2010) to simulate the collapse of steel moment 
frames under a column removal scenario were used to validate the fracture model. One frame had 
beam-to-column welded connections with a reduced beam sections (RBS), and the other frame 
had welded unreinforced flange-bolted web connections (WUFB). Columns and beams were A992 
Grade 50 steel in both frames, while the bolts in the WUFB frame were A490 bolts and E70T6 
electrodes were used for the welds. Loading consisted of downward displacement monotonically 
applied to the center column.  
 

 
Figure 5: Load-deformation responses and fracture patterns for RBS (a) and WUFB (b) frames. 

 
Failure of the RBS specimen started with fracture at the bottom flange of the reduced section that 
then propagated through the web as loading progressed, see Fig. 5a. In the WUFB specimen, 
failure started with local buckling of the beam top flanges, followed by shear failure of the bottom 
and middle bolts, and then across the bottom flange fracture at the weld access hole, see Fig. 5b. 
The simulations capture very well the load-deformation responses, failure progression, and 
fracture patterns experimentally observed for each tests. Fracture of the welds was not observed 
either in the experiments or simulations. The results demonstrate the validity of the fracture 
parameters calibrated for A992 steel and A490 bolts. 
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4.3 Cyclic Fracture in Steel Moment Connections 
Results from cyclic tests of two steel moment connections were compared to simulated responses 
to validate the fracture model. The first moment connection, tested as part of the SAC Steel Project 
Venture (Yu et al. 2000, SEAOC et al. 2015), consisted of a beam with reduced section (RBS) 
welded to the column flange and it was loaded using a near-fault cyclic loading protocol proposed 
by Clark et al. (1997). The welded connection between column and beam (both A572 grade 50 
steel) used E70T6 and E71T8 electrodes. Failure of the connection started with local buckling of 
web and flange that amplified every subsequent cycles of larger magnitude. The buckling 
deformation of the bottom flange at the RBS section led to a crack at one edge of the bottom flange 
that later propagated through the thickness and across half of the flange (Yu et al. 2000). The 
simulated load-deformation response and fracture correlate well with the experimental observation 
with fracture happening at the same location and cycle as observed in the test, see Fig. 6a. 
 

 
Figure 6: Cyclic responses and fracture patterns for two steel moment connections with RBS sections. 

 
A second moment connection used for validation consisted of a beam with reduced section (A992 
Grade 50) welded to and end plate (A572 Grade 50) that was bolted to the column flange 
(Eatherton et al. 2014). Details on the type of welding electrode was not mention in the 
experimental report, however fractures were not observed. The properties for the E70T6 weldment 
were used in the analysis. The connection was loaded using the AISC 341-10 cyclic loading 
protocol (AISC 2010). Connection failure started with local buckling in both top and bottom 
flanges at the RBS section that led to micro-cracks on the local buckles tension side. Fracture then 
propagated through the flange thickness and width that then later propagated to the web. Severe 
tearing at the bottom flange underside was also observed towards the end of the test. The reversed 
was observed in the simulation, bottom flange fracture that propagated to the web with severe 
tearing of the top flange, see Fig. 6b. The simulated load-deformation response resembles very 
well the experimental one. 
 
4.3 Cyclic Fracture in a Shear Links for Eccentric Braced Frames 
The last validation example is extracted from the tests performed by Galvez (2004). The tests 
studied the response of the shear links in eccentrically braced frames (EBF). A specimen consisting 
of a 23in. long W10x33 section (A992 Grade 50) with stiffeners welded to the flanges and web on 
both sides using E70T6 electrodes. Fracture started with small crack at the weld termination at the 
top of the stiffeners in one end of the link. Similar small crack appeared afterwards at the weld 
termination at the bottom of the stiffener on the link opposite end. Fracture initiation at these 
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locations is attributed to the material lower ductility in the heat affected zone (HAZ) around the 
welds caused by the welding process. Fracture propagated in the two inside panels along the web-
to-stiffener weld of the center stiffener and parallel to the flanges. The simulation captured very 
well the fracture initiation and progression observed experimentally as shown in Fig. 7 and 
demonstrate the validity of the calibrated fracture parameters for A992 steel and the HAZ material. 
 

  
Figure 7: Cyclic	response	and	fracture	pattern	for	EBF	shear	link	with	welded	stiffeners. 

 
4. Conclusions 
A new model for cyclic fracture simulation in steel structures has been developed and implemented 
for simulating damage leading to fracture in steel components and subassemblies. The Yoshida-
Uemori plasticity model for large plastic deformations is coupled to a damage model to simulate 
the softening of the stress-strain response caused by the fracture. An element deletion strategy is 
used to simulate the fracture propagation. The simulation results showcase the model capabilities 
to capture localized damage and fracture in small and large scale steel structural components. This 
study highlights as well the need to include all relevant details to accurately simulate damage and 
fracture in steel structures such as the weld details and reduced ductility in the HAZ zone. The 
proposed framework is a robust tool for simulating damage in steel structures subjected to extreme 
loads that can lead to collapse triggered by fracture in components and/or connections. 
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