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Abstract 

The objective of this paper is to evaluate currently available methods for predicting the warping 

and other deformations that occur in bare steel deck profiles under shear.  Profiled steel panels 

often serve as the diaphragm in single-story buildings and thus are the main element for 

distributing lateral forces to the walls. As a diaphragm they largely undergo in-plane shear. Thus, 

the in-plane shear stiffness of these panels is of crucial importance in design. The American Iron 

and Steel Institute (AISI) S310 Specification and Steel Deck Institute’s Diaphragm Design 

Manual (DDM) provide an analytical approximation for determining the shear stiffness based on 

contributions from the deck in pure shear, connection slip, and warping of the deck. Due to the 

thin-walled nature of the deck geometric nonlinear deformations can be important and stability 

of the deck profile can also influence the stiffness results. The prediction of the warping 

deformations is based on a simplified two-dimensional beam on elastic foundation 

approximation that is explained in detail herein. This model is an approximation of the actual 

three-dimensional deformations. Shell finite element models are constructed in ABAQUS to 

examine the deck shear displacements and idealized boundary conditions are introduced to 

isolate the deck deformations and compare with the approximations in DDM/AISI S310. 

Comparison of the results indicates that improvements in the DDM/AISI S310 model for 

predicting warping are possible; as is generalization of the approximate method employed. Shell 

finite element predictions of pure shear stiffness and connection slip are found to be in good 

agreement with DDM/AISI S310. This work is part of the larger Steel Diaphragm Innovation 

Initiative and aims to understand and optimize the behavior of steel deck diaphragms.  
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1. Introduction 

Profiled steel panels, i.e., steel deck, are roll-formed from thin steel sheets and can result in 

simple corrugated shapes or relatively complex longitudinal profiles with additional transverse 

features such as embossments. The corrugation layout studied in this paper is constrained to the 

configuration illustrated in Figure 1. Dimensions of four typical diaphragms studied herein are 

listed in Table 1. Profiled steel panels are often used as the walls and roofs in many metal 

buildings. In addition to distributing out-of-plane loads to the structure they often serve as the 

diaphragm in buildings and thus are the main element for distributing lateral forces to the walls, 

and largely act as an in-plane shear panel. 

 

 
Figure 1: Nomenclature for typical profiled steel panel corrugation 

 
Table 1: Typical dimensions of profiled steel panels 

ID
(1)

 
 

𝐷𝑑 𝑤 𝑑 2𝑒 𝑓 𝑠(2) 

WR 
[𝑖𝑛] 1.47 1.53 6.00 1.56 3.56 8.19 

[𝑚𝑚] 37.34 38.86 152.40 39.62 90.42 208.03 

IR 
[𝑖𝑛] 1.47 1.59 6.00 0.53 4.24 7.95 

[𝑚𝑚] 37.34 40.39 152.40 13.46 107.70 201.93 

NR 
[𝑖𝑛] 1.47 1.51 6.00 0.36 4.99 8.36 

[𝑚𝑚] 37.34 38.35 152.40 9.14 126.75 212.34 

DR 
[𝑖𝑛] 3.00 3.07 8.00 1.49 5.24 12.86 

[𝑚𝑚] 76.20 77.98 203.20 37.85 133.10 326.64 

1. ID: wide rib (WR), intermediate rib (IR), narrow rib (NR) and deep rib (DR) 

2. Perimeter length of profile s=2e+2w+f  

 

The shear behavior of the diaphragm is important in design. The American Iron and Steel 

Institute (AISI) S310 Specification (AISI, 2013) and the Steel Deck Institute’s (SDI’s) 

Diaphragm Design Manual (DDM) (Luttrell, 2015) provide an analytical approximation for 

determining the bare diaphragm’s strength and shear stiffness, where the strength is based on the 

lesser of the strength of the connections and buckling capacity of the steel plate, and the stiffness 

is based on contributions from the deck in pure shear, connection slip, and deck warping. This 

paper focuses primarily on the stiffness of the diaphragm. In particular, the warping contribution 

to the in-plane deck flexibility in shear, as given in AISI S310 and DDM, is based on a 

simplified two-dimensional beam on elastic foundation approximation. Expressions for the 

spring stiffness of the elastic foundation approximation are only provided for steel diaphragms 

with corrugation layout equal to the one in Figure 1. However, it is possible to calculate similar 

spring constants through a beam finite element (FE) model, where the complexity of the 

corrugation layout does not hinder the designer in finding the additional flexibility of the 

diaphragm due to deck warping displacements – this idea is studied herein.   
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2. AISI S310/DDM Calculations for Shear Stiffness 

Corrugations in the diaphragm cause reductions in the in-plane shear stiffness below that of an 

equivalent flat plate, and the estimate for the reduced shear stiffness is essential for design. The 

deformations in a shear loaded diaphragm are assumed to be composed of deformations from 

pure shear, fastener slip at connections, and lastly, warping displacements of the deck profile, 

which will occur for diaphragms with free ends. (Luttrell & Huang, 1981) 

 

 
Figure 2: Diaphragm subjected to shear load and shear deformation. 

 

Consider the diaphragm in Figure 2 subjected to pure shear approximated as a flat plate with 

thickness 𝑡, length 𝑙 and depth 𝑎, under a shear force 𝑃 and deflecting Δ, then the shear stiffness 

(𝐺′) may be written as: 

 

 𝐺′ = 𝐺𝑡 =
𝑃/𝑙𝑡

Δ/𝑎
𝑡 =

𝑃𝑎

𝑙  Δ
=

𝑃𝑎

𝑙 (Δ𝑠 +  Δ𝑓 +  Δ𝑤)
 (1) 

 

where Δ𝑠, Δ𝑓, and Δ𝑤 are the components of Δ associated with pure shear, slip of the fasteners, 

and warping deformations. The diaphragm stiffness, as in AISI S310, may alternatively be 

expressed in terms of a slip coefficient 𝐶 and a warping coefficient 𝐷𝑛: 

 

 𝐺′ =
𝐸 𝑡

2(1 + 𝜈)
𝑠
𝑑

+ 𝐶 + 𝐷𝑛 
 (2) 

 

where 𝐸, is the modulus of elasticity, 𝜈, is the Poisson’s ratio, and 𝑠/𝑑 is the ratio of the profile 

perimeter length to the flat plate length, provided in Table 1 for selected profiles.  
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2.1 Shear Strain Deformations 

For pure shear the shear stress is assumed to be constant throughout, which will result in a shear 

deformation from the shear stress of: 

 

 Δ𝑠 =
𝑃𝑎

𝐺 𝑙 𝑡

𝑠

𝑑
 (3) 

 

where 𝑠/𝑑 corrects for the longer path that the shear acts over due to the corrugations. 

 

2.2 Fastener Slip 

The deformation associated with fastener slip (i.e., localized deformations at connectors largely 

due to bending and bearing displacement localized in the thin steel sheet) is found by imposing a 

deformation of 𝛿𝑓 on the edge of a single panel, and assuming each fastener will displace an 

amount depending on the distance from the centerline, and each fastener will contribute with a 

force, which is a function of the flexibility of the fastener connection. See AISI S310/DDM 04 

for a free body diagram of this equilibrium state. The forces from each fastener are summed, and 

the force the single panel can resist when displaced 𝛿𝑓 at top and bottom is: 

 

 𝛿𝑓 = 𝑆𝑓𝑃
1

2 𝛼𝑒 + 𝑛𝑝𝛼𝑝 + 2 𝑛𝑠𝛼𝑠′
 (4) 

 

where 𝑆𝑓 is the flexibility of a structural fastener/connection, 𝛼𝑒 and 𝛼𝑝 are the sum of distances 

from centerline to fastener location on an edge member or a purlin; 𝛼𝑠
′ = 𝑆𝑓/𝑆𝑠 and is the 

structural to sidelap fastener flexibility ratio and 𝑛𝑝 and 𝑛𝑠 are the number of purlins in the 

diaphragm and the number of sidelap fasteners. The total shear deformation from fastener slip 

from multiple panels then becomes: 

 

 Δ𝑓 = 2𝛿𝑓 𝑛𝑑 =  𝑆𝑓𝑃
2 𝑛𝑑

2 𝛼𝑒 + 𝑛𝑝𝛼𝑝 + 2 𝑛𝑠𝛼𝑠′
 (5) 

 

Where 𝑛𝑑 is the number of panels along the height of the diaphragm: 𝑛𝑑 = 𝑎/𝑤𝑑, where 𝑤𝑑 is 

the width of a panel. Rearranging we may also express this as the slip coefficient: 

 

 𝐶 =
𝐸𝑡𝑙

𝑃𝑎
Δ𝑓 =

𝐸 𝑡 𝑙

𝑤𝑑
 𝑆𝑓

2

2 𝛼𝑒 + 𝑛𝑝𝛼𝑝 + 2 𝑛𝑠𝛼𝑠′
 (6) 

  

2.3 Warping Deformations 

The last contribution to the shear flexibility comes from the warping deformations of the 

diaphragm when subjected to shear loads. Considering a single corrugation (flute) with a load 𝑃 

along each side of the flute, the top flange will displace perpendicular to the direction of loading, 

see Figure 3a.  
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Figure 3: Warping displacements of a single corrugation due to shear loads along the length. 

 

Introducing a load 𝑃′ acting on the top flange at both ends is now causing this deformation, see 

Figure 3b. To estimate the warping displacement, a beam on elastic foundation is used to 

approximate the deformations of the top flange, see Figure 3c. The top flange is the beam and the 

webs are considered to be foundation springs connecting the flange to the fasteners, see Figure 

3d. The stiffness of the corrugation is first estimated for use as the spring stiffness in the beam on 

elastic foundation approximation. 

 

2.3.1 Spring constant 

The method used in (Luttrell & Huang, 1981) and AISI S310 to find the spring constants is first 

to find the flexibilities of a single corrugation with simple supports. Three flexibilities are found 

from two different load cases of the single corrugation: A horizontal unit load applied at the top 

flange, and a horizontal unit load at the bottom flange. The displacements at the top and bottom 

flange equal the flexibilities (two of the flexibilities are equal: 𝜉12 = 𝜉21). The flexibilities are 

then used to calculate the displacements at the upper and lower flanges of one or more 

corrugations and the displacements are directly related to the spring constants: 

 

 𝑘𝑖 =
𝑃𝑖

𝛿𝑖
 (7) 

 

Where 𝑃𝑖 is the applied load at the location of the displacement 𝛿𝑖. The flexibilities and spring 

constants can be found in Appendix to this paper and in AISI S310 Appendix 1 Eq. (1.4-8)-(1.4-

20). 

 

Some simplifications were introduced in the approximation to determine the spring constant for a 

single or multiple corrugations between fasteners. For one, the models employ hinges at the 

bottom flanges, for all corrugation layouts. Moreover, for multiple corrugations between 

fasteners, the lower flanges are supported by simple pin connections with horizontal rollers. To 

some extend this pin support with rollers can be justified by the presence of purlins, which 

provide supports for the corrugation.  
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2.3.2 Beam on Elastic Foundation 

The warping displacement in Figure 3, can be expressed as a beam (top flange/flute) supported 

by an elastic foundation along its entire length, as introduced by (Luttrell & Huang, 1981). The 

diaphragm flute is symmetric as is the loading, therefore only half of the flute is considered in 

the expression for the displacement. The resulting beam on elastic foundation is illustrated in 

Figure 4. 

 

 
Figure 4: Beam (top flange) on elastic foundation (corrugation and supports) model for warping. 

 

The governing differential equation and trial solution for this model is: 

 

 𝐸𝐼 𝑦𝑖𝑣 + 𝑘𝑦 = 0 (8a) 

 
𝑦 = 𝐴 cosh(𝛽𝑖 𝑥) 𝑐𝑜𝑠(𝛽𝑖 𝑥) + 𝐵 𝑠𝑖𝑛ℎ(𝛽𝑖 𝑥)𝑐𝑜𝑠(𝛽𝑖 𝑥) 
    + 𝐶 𝑐𝑜𝑠ℎ(𝛽𝑖 𝑥)𝑠𝑖𝑛(𝛽𝑖 𝑥) + 𝐷 𝑠𝑖𝑛ℎ(𝛽𝑖 𝑥) 𝑠𝑖𝑛(𝛽𝑖 𝑥) 

(8b) 

 

where 𝛽𝑡1
4 =

𝑘𝑡1

4𝐸𝐼𝑡
 is a stiffness parameter for a single top flange, note that different fastener 

layout will provide different spring stiffnesses, and therefore also different stiffness parameters 

𝛽𝑖. 𝐼𝑡 is the moment of inertia of the top flange and 1/6 of the top part of the web (empirically 

determined).  

 

 𝐼𝑡 =
𝑡𝑓2

12
(𝑓 + 𝑤) (9a) 

 𝐼𝑏 =
𝑡𝑒2

3
(2𝑒 + 𝑤) (9b) 

 

The beam in Figure 4 has boundary conditions of: 𝑦(𝑙/2) = 0, 𝑦′′(𝑙/2) = 0, 𝑦′’(0) = 0, 

𝑦′′′(0) = 𝑃′/𝐸𝐼𝑡, where 𝑃′ = 𝑃 𝑓/𝑙 is the force acting at the edge of the flange. Applying the 

boundary conditions to the solution in Eq. 8b results in a deflection at the free end equal to: 

 

 𝛿𝑡1 = 𝑦(0) =
𝑃′

2𝛽𝑡1
2  𝐸𝐼𝑡

 𝐴𝑡1 = 2𝑃′
𝛽𝑡1

𝑘𝑡1
 𝐴𝑡1 (10a) 

 𝐴𝑖 =
sinh (

𝛽𝑖𝑙
2 )

2

+ 𝑠𝑖𝑛 (
𝛽𝑖𝑙
2 )

2

𝑠𝑖𝑛ℎ (
𝛽𝑖𝑙
2 ) 𝑐𝑜𝑠ℎ (

𝛽𝑖𝑙
2 ) − 𝑐𝑜𝑠 (

𝛽𝑖𝑙
2 ) 𝑠𝑖𝑛 (

𝛽𝑖𝑙
2 )

 (10b) 
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2.3.3 Warping Coefficient 

The warping displacement can be expressed as a warping constant, which is used in DDM and 

AISI S310. Converting the displacement to the constant is done in several steps. First the 

corresponding shear displacement along the length of the flute is found, followed by summation 

of the individual flange’s contribution to the total displacement between fasteners: 

 

 𝛿𝑑𝑛 = ∑ 𝛿𝑡𝑖

𝑓

𝑙
+ 𝛿𝑏𝑖

2𝑒

𝑙

 

𝑛

 (11) 

 

The warping displacement is the ratio of total height of the diaphragm to the distance between 

fasteners: 

 

 Δ𝑤 =
𝑎

𝑛𝑑
𝛿𝑑𝑛 =

2𝑃

𝑛𝑑

𝑓2

𝑙2
 ∑

𝛽𝑡𝑖

𝑘𝑡𝑖
𝐴𝑡𝑖 + (

2𝑒

𝑓
)

2 𝛽𝑏𝑖

𝑘𝑏𝑖
𝐴𝑏𝑖 

 

𝑛

 (12) 

 

Lastly, we come to the warping coefficient 𝐷𝑛: 

 

 𝐷𝑛 =
𝐸𝑡𝑙

𝑃𝑎
Δ𝑤 =

2𝐸𝑡

𝑛𝑑

𝑓2

𝑙
  ∑

𝛽𝑡𝑖

𝑘𝑡𝑖
𝐴𝑡𝑖 + (

2𝑒

𝑓
)

2 𝛽𝑏𝑖

𝑘𝑏𝑖
𝐴𝑏𝑖  

 

𝑛

 (13) 

 

AISI S310 assumes 𝐴𝑖 = 1 and it is therefore omitted in the expression for the warping 

coefficient in the Specification. If 𝐴𝑖 is omitted from the expression 𝐷 = 𝐷𝑛𝐿 is a constant, and 

is listed in Table 3.3-2 in DDM and Table C-1.2 in the commentary to Appendix 1 in AISI S310.  

 

2.4 Intermediate Purlin Support 

Diaphragm panels supported by intermediate purlins will have a smaller reduction of the shear 

stiffness associated with warping. The purlins ensure the diaphragm panels are “pinned” to a 

location, and thus not free to warp unconstrained along the entire panel, this increases the force 

needed to warp the panel. The purlin effectiveness factor was first presented by (Bryan & El-

Dakhakhni, 1968) and later in (Luttrell & Huang, 1981). The idea is that the panel with 

intermediate purlin supports can be presented by several smaller panels with no intermediate 

purlins, see Figure 5. 

 

 
Figure 5: Panel with intermediate purlins and smaller panels with no intermediate purlins.  

From (Bryan & El-Dakhakhni, 1968) 
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Each of the panels with no intermediate purlins is assumed to deform Δ𝑑𝑛 caused by the forces 

𝑃1, 𝑃2, 𝑃3… 𝑃𝑛, applied at each panel. The strain energy in the panels associated with the applied 

load and deformation is dependent on the length of the panel: 

 

 
𝑈𝑖 =

𝑃𝑖
2

(𝑙 −
2(𝑖 − 1)
𝑛𝑝 + 1  𝑙)

2  𝐶 
(14) 

 

Differentiating the panels’ strain energies with the load 𝑃𝑖 results in the same constant for all the 

panels, this relation can be used to express the loads 𝑃2,𝑃3…𝑃𝑛 in terms of 𝑃1: 

 

 𝑃𝑖 = (1 −  
2 (𝑖 − 1)

𝑛𝑝 + 1
)

2

 𝑃1 (15) 

 

Finally, the load 𝑃 on the panel with intermediate purlin supports, are the sum of the loads acting 

on the sub panels: 

 

 𝑃 = 𝑃1 + 𝑃2 + 𝑃3+. . +𝑃𝑛 = ∑ (1 −  
2(𝑖 − 1)

𝑛𝑝 + 1
)

2𝑛

𝑖=1

𝑃1 =
1

𝜌
 𝑃1 (16) 

 

Determining the constant 𝜌 for different 𝑛𝑝, results in the values in Table 1.3-1 in AISI and 

Table 3.3-3 in DDM04.  

 

3. 2D FE Models for Warping Calculation 

Simple linear elastic FE beam models can replace the beam on elastic foundation calculations 

used in AISI S310 and DDM (i.e., Appendix and Eq. 8-11) for finding the warping displacement 

of the diaphragm. This potentially provides a more general approach for handling alternative 

panel profiles and engineers may more readily follow the beam analysis as opposed to the 

differential equations used in the current solution. The software Mastan2 version 3.4 is used to 

replace the AISI S310 expressions. 

 

3.1 Foundation Spring Stiffness 

Rather than employing the hand solutions introduced in Section 2.3.1/Appendix one may find the 

spring constants that support warping of the flange directly from a beam FE model. The 

corrugations between two fasteners are modeled as beam elements, apply a unit load at the top of 

each flute, and in the case of bottom flutes apply a load of size 𝑎′ = 2𝑒/𝑓 at each bottom flute. 

Pin supports are applied at the ends, and hinges and simple support with rollers are applied at 

each bottom flute, see Figure 6 for an example.   

 

 
Figure 6: FE model of corrugations presenting alternate fastener layout. 
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Linear elastic analysis is executed on the model, and the horizontal displacements at each 

location of the applied loads are extracted. The spring constant is then the load divided by the 

associated displacement: 

 

 𝑘𝑖 =
𝑃𝑖

𝛿𝑖
 (17) 

 

There can be multiple spring constants from the one model, depending on the number of 

corrugations. A single corrugation with fasteners at each bottom flute, has a single spring 

stiffness for the top flange, two corrugations will have a spring constant for the bottom flute and 

one for each of the top flutes, which will be equal due to symmetry.  

 

Table 2 lists the spring constants for the wide rib (WR) diaphragm type with fastener layout in 

each alternate corrugation using the method introduced in Section 2.3.1/Appendix and by using 

the FE model described here. Since the two approaches employ the same mechanical 

assumptions they are essentially coincident. This remains true for other diaphragm types (see 

dimensions listed in Table 1) and fastener spacing up to four corrugations between fasteners as 

provided in Appendix Table 4. 

 
Table 2: Spring constant for alternative fastener layout. The constants are found by use of linear elastic  

FE models and the expressions in AISI S310 Appendix 1. 

   
AISI S310 FEM Difference - % 

 
t 

 
𝑘𝑡2 𝑘𝑏2 𝑘𝑡2 𝑘𝑏2 𝑘𝑡2 𝑘𝑏2 

WR 

0.0295 in [psi] 15.98 3.89 15.93 3.88 
0.30 0.21 

0.7493 mm [ksi] 110.18 26.79 109.85 26.74 

0.0358 in [psi] 28.56 6.95 28.47 6.93 
0.30 0.21 

0.9093 mm [ksi] 196.92 47.88 196.33 47.78 

0.0474 in [psi] 66.29 16.12 66.09 16.09 
0.31 0.21 

1.2040 mm [ksi] 457.06 111.14 455.64 110.91 

0.0598 in [psi] 133.11 32.37 132.68 32.30 
0.32 0.22 

1.5189 mm [ksi] 917.78 223.18 914.82 222.69 

 

3.2 Beam on Elastic Foundation 

The AISI S310/DDM beam on elastic foundation expression can also be replaced with a simple 

FE model of a beam connected to a foundation of truss element “springs”. As the number of truss 

element springs is increased the response converges to the classical beam on elastic foundation 

solution. A beam with bending stiffness 𝐸𝐼𝑡 (from Eq. 9a) of length 𝑙 divided into (𝑛 − 1) 

elements and 𝑛 nodes is subjected to vertical loads at its ends in opposite directions. The beam is 

continuous and is pin connected to vertical beam elements at each node (no moment transfer 

between the vertical support beams and the horizontal continuous beam). The axial stiffness of 

the vertical beam elements, i.e. the “truss” spring is: 

 

 𝐸𝐴 =
𝑘 𝐿𝑏  𝑙

𝑛
 

 

(18) 



 10 

where 𝐿𝑏 is the length of the vertical beam elements, 𝑘 is the continuous spring stiffness of the 

elastic foundation, which here is the spring stiffness found in the section above or by Eq. A3b in 

the Appendix. 

 

The FE results are sensitive to the number of elements, convergence of a typical model is 

provided in Figure 7. At 100 elements the difference with the analytical solution is 1.1%.  

 

 
Figure 7: Convergence plot of the FE beam on elastic foundation displacement  

compared with the analytical solution.  

 

This section shows that the general warping derivations of (Luttrell & Huang, 1981) as used 

today in AISI S310 or DDM may be understood as the result of the application of 

straightforward 2D beam element models. In fact, the warping deformation or warping 

coefficient may be arrived at directly from such simple models. This is a promising result as it 

makes generalization of the method to any unique profile much less cumbersome than re-

deriving the complete expressions (see Appendix). A separate question remains, what is the 

accuracy of this approach. That aspect is explored in the following section.  

 

4. 3D Models in Abaqus 

A general examination of the performance of the AISI S310/DDM stiffness expressions was 

performed in (Bian & Schafer, 2017) and (Bian, et al., 2016). That work indicated that the AISI 

S310/DDM expressions for pure shear are consistent with 3D shell finite element models. The 

work also indicated that the influence of connection flexibility (slip) is reasonably captured by 

the AISI S310/DDM expressions. However, the previous work concluded that the existing AISI 

S310/DDM expressions for warping may require improvement. All previous modeling was 

conducted on full multi-panel diaphragms – similar to cantilever diaphragm tests, and it was 

concluded that a more fundamental treatment was needed.  

 

A 3D shell finite element model was developed herein to explore and isolate the influence of 

warping deformations on panels. The models are built with shell elements of a single corrugation 

of the WR diaphragm type (see Table 1 for dimensions) with length 𝑙 and thickness 𝑡. The 
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material is linear elastic steel with Young’s modulus 𝐸 = 29500 𝑘𝑠𝑖 (203395 𝑀𝑃𝑎) and 

poisson’s ratio 𝜈 = 0.3. A general static step is used with node (0,0,0) pinned in all three 

directions, and node (𝑙, 0,0) pinned in the y- and z-direction. The edges along the flute are 

pinned in the y-direction.  Shear shell edge loads are applied on all edges of the model, with load 

𝜏′ = 1000𝑘𝑖𝑝𝑠/𝑖𝑛 with directions that represents a plate in pure shear. The element type used 

for the models is S8R5 this is a quadratic shell element with reduced integration and 5 DOF per 

node. The mesh size is chosen to be 𝑒/6 to ensure a fine mesh over the smaller parts of the flute.  

 
Figure 8: Abaqus model of single corrugation.  

 

A simple linear elastic analysis is performed on the model and the maximum shear displacement 

is extracted. Since there are no fasteners and all member edges are loaded only the pure shear 

and warping contribute to the solution. The warping coefficient can be expressed in terms of the 

edge load and the shear displacement. Rewriting Eq. 1 and Eq. 2 with Δ𝑓 = 𝐶 = 0 the warping 

coefficient may be expressed as: 

 

 𝐷𝑛 =
𝐸 𝑡 𝑙

𝑎

Δ

𝑃
− 2 (1 + 𝜈)

𝑠

𝑑
  (19) 

 

For lengths between 48 – 240 in. (i.e., 4 – 20 ft or 1.2-6.1 m) the warping coefficient 𝐷𝑛 remains 

constant, see Table 3. This is not in agreement with AISI S310/DDM, where 𝐷 = 𝐷𝑛𝑙 is a 

constant and takes a value much larger than found with Abaqus. The results are provided in 

Table 4, differences are greater than observed in (Bian & Schafer, 2017), but follow the same 

trend – i.e. the shell models indicate significantly less warping deformation than the beam on 

elastic foundation solution.  
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Table 3: Warping coefficient 𝐷𝑛 found with models in Abaqus and  

table values of the constant 𝐷 = 𝐷𝑛𝑙 from Table C-1.2 in AISI S310. 
 

 
AISI S310 Abaqus models 

 t D table values 𝐷𝑛 

 [in]  [mm] [in]  [m] [10−3] 

W
R

 

0.0295 1237 
3.850229 

0.75 31.40 

0.0358 925 
3.846935 

0.91 23.50 

0.0474 607 
3.845853 

1.20 15.40 

0.0598 429 
3.849885 

1.52 10.90 

 

The results of the model of the WR deck with 𝑡 =0.0295 𝑖𝑛 (0.75 𝑚𝑚) are provide in Figure 9. 

The shear stress is essentially constant and matches the applied load and geometry: the 

associated calculated shear stress and the shear stress from the model equals 𝜏 = 𝑃/(𝑙 𝑡)  =
33.8983 103 𝑘𝑠𝑖. However, the stresses at the free ends of the model are slightly elevated due to 

the additional warping deformation that occurs. 

 

 
Figure 9: Deformed and undeformed Abaqus model of a single corrugation.  

 

7. Discussion 

The calculations in AISI S310 Appendix 1 to determine the warping coefficient 𝐷𝑛 are laborious 

for even a simple deck corrugation. The calculations are straightforward, but assumptions behind 

the models, particularly in AISI S310, are not necessarily clear. If web or flange stiffeners are 

introduced to the cross-section, or another type of diaphragm corrugation is used, the current 

calculation procedure does not make it easy to determine this coefficient for warping.  
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For warping the AISI S310 calculations could be replaced by two simple beam finite element 

models – one to find the cross-section stiffness that helps to restrain warping and a second to 

apply that stiffness as a resisting foundation in approximating expected warping of the top 

flange. The methods are shown to be the same for a series of known cross-sections. The 

approach would be unchanged for more complex cross-sections and thus provides a simple 

analysis alternative to the current prescriptive expressions.  

 

The 3D shell finite element model in ABAQUS predicts a stiffer response (less warping 

displacement) than the AISI S310/DDM method. Overall the AISI S310/DDM stiffness 

correlates reasonably with experiments (O'Brien, et al., 2017) suggesting that the approach is 

well founded. However, while the AISI S310/DDM warping model is mechanically inspired, it is 

not an accurate representation of the actual behavior. The foundation stiffness and the boundary 

conditions are very rough approximations of the actual condition. The selection of the top flange 

and tributary width of web is also empirical. The model includes some of the key mechanics 

associated with deck warping, but appears to not be an accurate representation of the actual 3D 

behavior. This is consistent with findings in (Bian & Schafer, 2017). 

 

Future studies could consider different boundary conditions and loading cases in the shell FE 

models to potentially find warping displacements that agree more with the values giving in the 

Specification and to better understand what assumptions there were made in creating the warping 

coefficients. The most obvious next step in determining in necessary improvements is to use the 

more mechanically correct estimations of warping and compare them with the available test data, 

as summarized in (O'Brien, et al., 2017), and from this determine if the predicted deflections are 

improved. If yes, then changes may be warranted. If no, then it may need to be recognized that 

the current expressions approximate more than just warping deformations.     

 

8. Conclusions 

In this paper the current formulation used in design for determining the shear flexibility of 

profiled steel panels caused by warping displacement at the ends are investigated and new 

methods to find this flexibility presented. The formulas for warping flexibility in the American 

Iron and Steel Institute (AISI) S310 Specification are for one type of diaphragm corrugation, 

with no web or flange stiffeners and replication of the formulas for improved cross-sections are 

not supported. It is shown herein that the AISI S310 formulation for warping deformation is 

mechanically equivalent to a beam element model of the top flange  (length equal to the deck 

span length) supported by springs which are developed from exercising an additional beam 

element model of the cross-section profile to find the spring stiffness. This model can readily be 

extended to other deck profiles. Additional studies were conducted to examine the validity of the 

AISI S310 warping predictions using ABAQUS shell finite element models. The shell models 

predict considerably less warping deformation than the AISI S310 approach. Additional study is 

needed to resolve this discrepancy and possible future research is discussed herein. 
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Appendix 

Spring Constants from AISI S310 Appendix 1 

Three flexibility expressions for a single simple supported corrugation (also found in AISI S310 

Appendix 1 Eq. (1.4-8)-(1.4-10)): 

 

 

 𝐸𝐼 𝜉11 =
𝐷𝑑

3

3
 (2𝑤 + 3𝑓) (A1a) 

 𝐸𝐼 𝜉22 =
𝐷𝑑

2

12 𝑑2
 (𝑠 (4𝑒2 − 2𝑒𝑓 + 𝑓2) + 𝑑2 (3𝑓 + 2𝑤)) (A1b) 

 𝐸𝐼 𝜉12 =
𝐷𝑑

2

6
(2𝑤 + 3𝑓) =

𝐸𝐼𝜉11

2
 (A1c) 

 

The spring constants are the stiffness of the webs supporting the flanges, using the flexibilities 

and the principle of superposition, the displacement of the corrugation can be determined. The 

fastener layout comes into play to set up the relations between forces and displacements. For 

fasteners between each corrugation, a single corrugation is considered, see Figure 10, where 

forces are applied at node 1 and 2, note that the right support is now a pin support without 

rollers, which gives a displacement Δ1 = 0: 

 

 [
0

Δ2
] = [

𝜉11 𝜉12

𝜉12 𝜉22
] [

𝑄1

𝐹
] (A2) 

 

 
Figure 10: Single flute case, fastener between each corrugation, the forces and reactions are illustrated. 

 

Solving these linear equations, the displacement and the corresponding spring stiffness can be 

found for a single corrugation: 

 Δ2 = −
𝜉12

2

𝜉11
 𝐹 + 𝜉22𝐹 (A3a) 

 𝑘𝑡1 =
𝐹

Δ2
=

𝜉11

𝜉22𝜉11 − 𝜉12
2  (A3b) 

 

For two flutes between fasteners, two corrugations are connected. A load 𝐹 is applied at the two 

top flanges and a load 𝑎′𝐹 at the bottom flange, see Figure 11, this load is divided evenly 

between the two corrugations, where 𝑎′ = 2𝑒/𝑓 is the equivalent force multiplier for the lower 

flange: 

 

 [
Δ1

Δ2
] = [

𝜉11 𝜉12

𝜉12 𝜉22
] [

𝑎′𝐹

2
𝐹

] (A4a) 

 [
Δ1

Δ4
] = [

𝜉11 𝜉12

𝜉12 𝜉22
] [

𝑎′𝐹

2
𝐹

] (A4b) 
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 𝑘𝑡2 =
𝐹

Δ2
=

1

𝜉22 +
𝑎′

2 𝜉12

 (A5a) 

 𝑘𝑏2 =
𝑎′𝐹

Δ1
=

𝑎′

𝜉12 +
𝑎′

2 𝜉11

 (A5b) 

 

 
Figure 11: Double flute case, fastener between very other corrugations. The forces and reactions are illustrated. 

 

Three flutes between fasteners, means three corrugations are connected and a load 𝐹 is applied at 

the three top flanges and a load 𝑎′𝐹 at the two bottom flanges. The middle corrugation is only 

subjected to a load at the top flange and reaction forces, additionally it also feels the deformation 

from the first corrugation. The first and last corrugations are the same, with the same loads.  

 

 [
Δ1

Δ2
] = [

𝜉11 𝜉12

𝜉12 𝜉22
] [

𝐹

2
+ 𝑎′𝐹

𝐹
] (A6a) 

 [
Δ3

Δ4
] = [

𝜉11 𝜉12

𝜉12 𝜉22
] [−

𝐹

2
𝐹

] + Δ1 (A6b) 

 [
Δ3

Δ6
] = [

𝜉11 𝜉12

𝜉12 𝜉22
] [

𝐹

2
+ 𝑎′𝐹

𝐹
] (A6c) 

 

 𝑘𝑡3 =
𝐹

Δ2
=

1

𝜉22 + (𝑎′ +
1
2) 𝜉12

 (A7a) 

 𝑘𝑏3 =
𝑎′𝐹

Δ1
=

𝑎′

𝜉12 + (𝑎′ +
1
2) 𝜉11

 (A7b) 

 𝑘𝑡𝑐3 =
𝑎′𝐹

Δ4
=

𝑎′

1
2

𝜉12 + 𝜉22 + (𝑎′ +
1
2

) 𝜉11

 (A7c) 

 

 
Figure 12: Triple flute case, fastener between very third corrugations. The forces and reactions are illustrated. 

 

Same procedure can be applied on more flutes between fasteners. 
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