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Abstract

The objective of this paper is to evaluate currently available methods for predicting the warping
and other deformations that occur in bare steel deck profiles under shear. Profiled steel panels
often serve as the diaphragm in single-story buildings and thus are the main element for
distributing lateral forces to the walls. As a diaphragm they largely undergo in-plane shear. Thus,
the in-plane shear stiffness of these panels is of crucial importance in design. The American Iron
and Steel Institute (AISI) S310 Specification and Steel Deck Institute’s Diaphragm Design
Manual (DDM) provide an analytical approximation for determining the shear stiffness based on
contributions from the deck in pure shear, connection slip, and warping of the deck. Due to the
thin-walled nature of the deck geometric nonlinear deformations can be important and stability
of the deck profile can also influence the stiffness results. The prediction of the warping
deformations is based on a simplified two-dimensional beam on elastic foundation
approximation that is explained in detail herein. This model is an approximation of the actual
three-dimensional deformations. Shell finite element models are constructed in ABAQUS to
examine the deck shear displacements and idealized boundary conditions are introduced to
isolate the deck deformations and compare with the approximations in DDM/AISI S310.
Comparison of the results indicates that improvements in the DDM/AISI S310 model for
predicting warping are possible; as is generalization of the approximate method employed. Shell
finite element predictions of pure shear stiffness and connection slip are found to be in good
agreement with DDM/AISI S310. This work is part of the larger Steel Diaphragm Innovation
Initiative and aims to understand and optimize the behavior of steel deck diaphragms.
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1. Introduction

Profiled steel panels, i.e., steel deck, are roll-formed from thin steel sheets and can result in
simple corrugated shapes or relatively complex longitudinal profiles with additional transverse
features such as embossments. The corrugation layout studied in this paper is constrained to the
configuration illustrated in Figure 1. Dimensions of four typical diaphragms studied herein are
listed in Table 1. Profiled steel panels are often used as the walls and roofs in many metal
buildings. In addition to distributing out-of-plane loads to the structure they often serve as the
diaphragm in buildings and thus are the main element for distributing lateral forces to the walls,
and largely act as an in-plane shear panel.
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Figure 1: Nomenclature for typical profiled steel panel corrugation

Table 1: Typical dimensions of profiled steel panels

IDYW D, w d 2e f s@
[in] 1.47 1.53 6.00 1.56 3.56 8.19

WR [mm]  37.34 3886 15240 39.62  90.42  208.03
R [in] 1.47 1.59 6.00 0.53 4.24 7.95

[mm] 3734 4039 15240 1346  107.70 201.93
[in] 1.47 1.51 600 036 499 836
[mm] 3734 3835 15240 914 12675 212.34
[in] 300 307 800 149 524 1286

[mm] 76.20 77.98 203.20 37.85 133.10  326.64

1. ID: wide rib (WR), intermediate rib (IR), narrow rib (NR) and deep rib (DR)
2. Perimeter length of profile s=2e+2w+f

NR

DR

The shear behavior of the diaphragm is important in design. The American Iron and Steel
Institute (AISI) S310 Specification (AISI, 2013) and the Steel Deck Institute’s (SDI’s)
Diaphragm Design Manual (DDM) (Luttrell, 2015) provide an analytical approximation for
determining the bare diaphragm’s strength and shear stiffness, where the strength is based on the
lesser of the strength of the connections and buckling capacity of the steel plate, and the stiffness
is based on contributions from the deck in pure shear, connection slip, and deck warping. This
paper focuses primarily on the stiffness of the diaphragm. In particular, the warping contribution
to the in-plane deck flexibility in shear, as given in AISI S310 and DDM, is based on a
simplified two-dimensional beam on elastic foundation approximation. Expressions for the
spring stiffness of the elastic foundation approximation are only provided for steel diaphragms
with corrugation layout equal to the one in Figure 1. However, it is possible to calculate similar
spring constants through a beam finite element (FE) model, where the complexity of the
corrugation layout does not hinder the designer in finding the additional flexibility of the
diaphragm due to deck warping displacements — this idea is studied herein.



2. AISI S310/DDM Calculations for Shear Stiffness

Corrugations in the diaphragm cause reductions in the in-plane shear stiffness below that of an
equivalent flat plate, and the estimate for the reduced shear stiffness is essential for design. The
deformations in a shear loaded diaphragm are assumed to be composed of deformations from
pure shear, fastener slip at connections, and lastly, warping displacements of the deck profile,
which will occur for diaphragms with free ends. (Luttrell & Huang, 1981)
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Figure 2: Diaphragm subjected to shear load and shear deformation.

Consider the diaphragm in Figure 2 subjected to pure shear approximated as a flat plate with
thickness t, length [ and depth a, under a shear force P and deflecting A, then the shear stiffness
(G") may be written as:

G’—Gt—P/ltt—Pa— Pa 1
O AJa LA I(A+ A+ A) @

where Ag, Ag, and A, are the components of A associated with pure shear, slip of the fasteners,
and warping deformations. The diaphragm stiffness, as in AISI S310, may alternatively be
expressed in terms of a slip coefficient C and a warping coefficient D,,

Et

G = 2
2(1+v)5+C+D, )

where E, is the modulus of elasticity, v, is the Poisson’s ratio, and s/d is the ratio of the profile
perimeter length to the flat plate length, provided in Table 1 for selected profiles.



2.1 Shear Strain Deformations
For pure shear the shear stress is assumed to be constant throughout, which will result in a shear
deformation from the shear stress of:
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where s/d corrects for the longer path that the shear acts over due to the corrugations.

2.2 Fastener Slip

The deformation associated with fastener slip (i.e., localized deformations at connectors largely
due to bending and bearing displacement localized in the thin steel sheet) is found by imposing a
deformation of &, on the edge of a single panel, and assuming each fastener will displace an
amount depending on the distance from the centerline, and each fastener will contribute with a
force, which is a function of the flexibility of the fastener connection. See AISI S310/DDM 04
for a free body diagram of this equilibrium state. The forces from each fastener are summed, and
the force the single panel can resist when displaced &5 at top and bottom is:

1

8 =S¢P
= 2a, + nya, + 2ngay’

(4)

where Sy is the flexibility of a structural fastener/connection, a, and a,, are the sum of distances
from centerline to fastener location on an edge member or a purlin; ag = S;/Ss and is the
structural to sidelap fastener flexibility ratio and n,, and ng are the number of purlins in the

diaphragm and the number of sidelap fasteners. The total shear deformation from fastener slip
from multiple panels then becomes:

2 Ng

(5)

2 a, +nya, + 2 nsay’

Where n, is the number of panels along the height of the diaphragm: n; = a/w,, where wy is
the width of a panel. Rearranging we may also express this as the slip coefficient:

B _Etl 2
T pa T

(6)
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2.3 Warping Deformations

The last contribution to the shear flexibility comes from the warping deformations of the
diaphragm when subjected to shear loads. Considering a single corrugation (flute) with a load P
along each side of the flute, the top flange will displace perpendicular to the direction of loading,
see Figure 3a.
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Figure 3: Warping displacements of a single corrugation due to shear loads along the length.

Introducing a load P’ acting on the top flange at both ends is now causing this deformation, see
Figure 3b. To estimate the warping displacement, a beam on elastic foundation is used to
approximate the deformations of the top flange, see Figure 3c. The top flange is the beam and the
webs are considered to be foundation springs connecting the flange to the fasteners, see Figure
3d. The stiffness of the corrugation is first estimated for use as the spring stiffness in the beam on
elastic foundation approximation.

2.3.1 Spring constant

The method used in (Luttrell & Huang, 1981) and AISI S310 to find the spring constants is first
to find the flexibilities of a single corrugation with simple supports. Three flexibilities are found
from two different load cases of the single corrugation: A horizontal unit load applied at the top
flange, and a horizontal unit load at the bottom flange. The displacements at the top and bottom
flange equal the flexibilities (two of the flexibilities are equal: &, = &,,). The flexibilities are
then used to calculate the displacements at the upper and lower flanges of one or more
corrugations and the displacements are directly related to the spring constants:

ki =— ()

Where P; is the applied load at the location of the displacement &;. The flexibilities and spring
constants can be found in Appendix to this paper and in AISI S310 Appendix 1 Eq. (1.4-8)-(1.4-
20).

Some simplifications were introduced in the approximation to determine the spring constant for a
single or multiple corrugations between fasteners. For one, the models employ hinges at the
bottom flanges, for all corrugation layouts. Moreover, for multiple corrugations between
fasteners, the lower flanges are supported by simple pin connections with horizontal rollers. To
some extend this pin support with rollers can be justified by the presence of purlins, which
provide supports for the corrugation.



2.3.2 Beam on Elastic Foundation

The warping displacement in Figure 3, can be expressed as a beam (top flange/flute) supported
by an elastic foundation along its entire length, as introduced by (Luttrell & Huang, 1981). The
diaphragm flute is symmetric as is the loading, therefore only half of the flute is considered in
the expression for the displacement. The resulting beam on elastic foundation is illustrated in
Figure 4.
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Figure 4: Beam (top flange) on elastic foundation (corrugation and supports) model for warping.

The governing differential equation and trial solution for this model is:

ElIyY +ky =0 (8a)
y = A cosh(f; x) cos(B; x) + B sinh(B; x)cos(B; x) (8b)
+ C cosh(B; x)sin(B; x) + D sinh(p; x) sin(B; x)
where B}, = —= is a stiffness parameter for a single top flange, note that different fastener

layout will prowde different spring stiffnesses, and therefore also different stiffness parameters
B;. I, is the moment of inertia of the top flange and 1/6 of the top part of the web (empirically
determined).

=L +w (%)
I, = t% (2e +w) (9b)

The beam in Figure 4 has boundary conditions of: y(1/2) =0, y"(l/2) =0, y"(0) =0,
y'"'(0) = P'/EI,, where P' = P f/l is the force acting at the edge of the flange. Applying the
boundary conditions to the solution in Eq. 8b results in a deflection at the free end equal to:

=vy(0 ——P, A = 2P’ﬁ Ay 10
11 =( )_Z,BtlEIt t1 = ktl (10a)
Bil Bil
A= smh( > + Sln( ) (105)

sinh (E4) cosh (B4F) - cos (Bt sin (&)



2.3.3 Warping Coefficient

The warping displacement can be expressed as a warping constant, which is used in DDM and
AISI S310. Converting the displacement to the constant is done in several steps. First the
corresponding shear displacement along the length of the flute is found, followed by summation
of the individual flange’s contribution to the total displacement between fasteners:

f 2e
San = Z Oti T + 5biT (11)
n

The warping displacement is the ratio of total height of the diaphragm to the distance between
fasteners:

a 2P f2 O PBui 2\’ By;
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Lastly, we come to the warping coefficient D,,:

Etl 2Et f2 ~O Pei 2e\? By
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n

AISI S310 assumes A; =1 and it is therefore omitted in the expression for the warping

coefficient in the Specification. If A; is omitted from the expression D = D, L is a constant, and
is listed in Table 3.3-2 in DDM and Table C-1.2 in the commentary to Appendix 1 in AISI S310.

2.4 Intermediate Purlin Support

Diaphragm panels supported by intermediate purlins will have a smaller reduction of the shear
stiffness associated with warping. The purlins ensure the diaphragm panels are “pinned” to a
location, and thus not free to warp unconstrained along the entire panel, this increases the force
needed to warp the panel. The purlin effectiveness factor was first presented by (Bryan & El-
Dakhakhni, 1968) and later in (Luttrell & Huang, 1981). The idea is that the panel with
intermediate purlin supports can be presented by several smaller panels with no intermediate
purlins, see Figure 5.
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Figure 5: Panel with intermediate purlins and smaller panels with no intermediate purlins.
From (Bryan & El-Dakhakhni, 1968)



Each of the panels with no intermediate purlins is assumed to deform A, caused by the forces
P, P,, P;... P,, applied at each panel. The strain energy in the panels associated with the applied
load and deformation is dependent on the length of the panel:

P 2

L

=T

i

Differentiating the panels’ strain energies with the load P; results in the same constant for all the
panels, this relation can be used to express the loads P,,P;...P, in terms of P;:

. 2
= <1 _ M) P, (15)

Finally, the load P on the panel with intermediate purlin supports, are the sum of the loads acting
on the sub panels:

n

P=P +P, + P+ +P—Z 1 Z(i_l)zp—lp (16)
— 11 2 3T n — Tlp+1 1_p 1

i=1

Determining the constant p for different n,, results in the values in Table 1.3-1 in AISI and
Table 3.3-3 in DDMO04.

3. 2D FE Models for Warping Calculation

Simple linear elastic FE beam models can replace the beam on elastic foundation calculations
used in AISI S310 and DDM (i.e., Appendix and Eq. 8-11) for finding the warping displacement
of the diaphragm. This potentially provides a more general approach for handling alternative
panel profiles and engineers may more readily follow the beam analysis as opposed to the
differential equations used in the current solution. The software Mastan2 version 3.4 is used to
replace the AISI S310 expressions.

3.1 Foundation Spring Stiffness

Rather than employing the hand solutions introduced in Section 2.3.1/Appendix one may find the
spring constants that support warping of the flange directly from a beam FE model. The
corrugations between two fasteners are modeled as beam elements, apply a unit load at the top of
each flute, and in the case of bottom flutes apply a load of size a’ = 2e/f at each bottom flute.
Pin supports are applied at the ends, and hinges and simple support with rollers are applied at
each bottom flute, see Figure 6 for an example.
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Figure 6: FE model of corrugations presenting alternate fastener layout.



Linear elastic analysis is executed on the model, and the horizontal displacements at each
location of the applied loads are extracted. The spring constant is then the load divided by the
associated displacement:

K, = o (17)
‘7o

There can be multiple spring constants from the one model, depending on the number of
corrugations. A single corrugation with fasteners at each bottom flute, has a single spring
stiffness for the top flange, two corrugations will have a spring constant for the bottom flute and
one for each of the top flutes, which will be equal due to symmetry.

Table 2 lists the spring constants for the wide rib (WR) diaphragm type with fastener layout in
each alternate corrugation using the method introduced in Section 2.3.1/Appendix and by using
the FE model described here. Since the two approaches employ the same mechanical
assumptions they are essentially coincident. This remains true for other diaphragm types (see
dimensions listed in Table 1) and fastener spacing up to four corrugations between fasteners as
provided in Appendix Table 4.

Table 2: Spring constant for alternative fastener layout. The constants are found by use of linear elastic
FE models and the expressions in AlSI S310 Appendix 1.

AISI S310 FEM Difference - %
t ke, kp ke, kp ke, ky,
0.0295 in [psi] 15.98 3.89 15.93 3.88
. 0.30 0.21
0.7493 mm [ksi] 110.18 26.79 109.85 26.74
0.0358 in [psi] 28.56 6.95 28.47 6.93 0.30 0.21
WR 0.9093 mm [ksi] 196.92 47.88 196.33 47.78
0.0474 in [psi] 66.29 16.12 66.09 16.09 0.31 0.21
1.2040 mm [ksi] 457.06 111.14 455.64 110.91
0.0598 in [psi] 133.11 32.37 132.68 32.30 0.3 0.2
1.5189 mm [ksi] 917.78 223.18 914.82 222.69

3.2 Beam on Elastic Foundation

The AISI S310/DDM beam on elastic foundation expression can also be replaced with a simple
FE model of a beam connected to a foundation of truss element “springs”. As the number of truss
element springs is increased the response converges to the classical beam on elastic foundation
solution. A beam with bending stiffness EI, (from Eq. 9a) of length [ divided into (n —1)
elements and n nodes is subjected to vertical loads at its ends in opposite directions. The beam is
continuous and is pin connected to vertical beam elements at each node (no moment transfer
between the vertical support beams and the horizontal continuous beam). The axial stiffness of
the vertical beam elements, i.e. the “truss” spring is:

kLl

EA=— (18)




where L, is the length of the vertical beam elements, k is the continuous spring stiffness of the
elastic foundation, which here is the spring stiffness found in the section above or by Eq. A3b in
the Appendix.

The FE results are sensitive to the number of elements, convergence of a typical model is
provided in Figure 7. At 100 elements the difference with the analytical solution is 1.1%.
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Figure 7: Convergence plot of the FE beam on elastic foundation displacement
compared with the analytical solution.

This section shows that the general warping derivations of (Luttrell & Huang, 1981) as used
today in AISI S310 or DDM may be understood as the result of the application of
straightforward 2D beam element models. In fact, the warping deformation or warping
coefficient may be arrived at directly from such simple models. This is a promising result as it
makes generalization of the method to any unique profile much less cumbersome than re-
deriving the complete expressions (see Appendix). A separate question remains, what is the
accuracy of this approach. That aspect is explored in the following section.

4. 3D Models in Abaqus

A general examination of the performance of the AISI S310/DDM stiffness expressions was
performed in (Bian & Schafer, 2017) and (Bian, et al., 2016). That work indicated that the AISI
S310/DDM expressions for pure shear are consistent with 3D shell finite element models. The
work also indicated that the influence of connection flexibility (slip) is reasonably captured by
the AISI S310/DDM expressions. However, the previous work concluded that the existing AISI
S310/DDM expressions for warping may require improvement. All previous modeling was
conducted on full multi-panel diaphragms — similar to cantilever diaphragm tests, and it was
concluded that a more fundamental treatment was needed.

A 3D shell finite element model was developed herein to explore and isolate the influence of

warping deformations on panels. The models are built with shell elements of a single corrugation
of the WR diaphragm type (see Table 1 for dimensions) with length [ and thickness t. The

10



material is linear elastic steel with Young’s modulus E = 29500 ksi (203395 MPa) and
poisson’s ratio v = 0.3. A general static step is used with node (0,0,0) pinned in all three
directions, and node ({,0,0) pinned in the y- and z-direction. The edges along the flute are
pinned in the y-direction. Shear shell edge loads are applied on all edges of the model, with load
' = 1000kips/in with directions that represents a plate in pure shear. The element type used
for the models is S8R5 this is a quadratic shell element with reduced integration and 5 DOF per
node. The mesh size is chosen to be e/6 to ensure a fine mesh over the smaller parts of the flute.

L)

Figure 8: baqus model of single corrugation.

A simple linear elastic analysis is performed on the model and the maximum shear displacement
is extracted. Since there are no fasteners and all member edges are loaded only the pure shear
and warping contribute to the solution. The warping coefficient can be expressed in terms of the
edge load and the shear displacement. Rewriting Eqg. 1 and Eq. 2 with Ar = C = 0 the warping
coefficient may be expressed as:

D=2 _201+n3 (19)
a

For lengths between 48 — 240 in. (i.e., 4 — 20 ft or 1.2-6.1 m) the warping coefficient D,, remains
constant, see Table 3. This is not in agreement with AISI S310/DDM, where D = D, !l is a
constant and takes a value much larger than found with Abaqus. The results are provided in
Table 4, differences are greater than observed in (Bian & Schafer, 2017), but follow the same
trend — i.e. the shell models indicate significantly less warping deformation than the beam on
elastic foundation solution.
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Table 3: Warping coefficient D,, found with models in Abaqus and
table values of the constant D = D, [ from Table C-1.2 in AlISI S310.

AISI S310 Abaqus models
t D table values D,
[in] [mm] [in] [m] [1073]
0.0295 1237 3.850229
0.75 31.40 '
0.0358 925
3.846935
@ 0.91 23.50
= 0.0474 607
3.845853
1.20 15.40
0.0598 429 3.849885
1.52 10.90 '

The results of the model of the WR deck with ¢t =0.0295 in (0.75 mm) are provide in Figure 9.
The shear stress is essentially constant and matches the applied load and geometry: the
associated calculated shear stress and the shear stress from the model equals T = P/(lt) =
33.8983 103 ksi. However, the stresses at the free ends of the model are slightly elevated due to
the additional warping deformation that occurs.

S, slz2
SNEG, (fraction = -1.0)
-3.390e+04
-3.390e+04
-3.390e+04
-3.390e+04
-3.390e+04
-3.390e+04
-3.390e+04
-3.390e+04
-3.390e+04
-3.390e+04
-3.390e+04
-3.390e+04
-3.390e+04

Y 0ODB: MESH3-2-1.0db  Abaqus/Standar gl 4340k U Eastern Daylight Time 2018

Step: GeneralStaticStep
Increment 1: Step Time = 1.000

¥4 X Primary War: 5, S12

Figure 9: Deformed and undeformed Abaqus model of a single corrugation.

7. Discussion

The calculations in AISI S310 Appendix 1 to determine the warping coefficient D,, are laborious
for even a simple deck corrugation. The calculations are straightforward, but assumptions behind
the models, particularly in AISI S310, are not necessarily clear. If web or flange stiffeners are
introduced to the cross-section, or another type of diaphragm corrugation is used, the current
calculation procedure does not make it easy to determine this coefficient for warping.
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For warping the AISI S310 calculations could be replaced by two simple beam finite element
models — one to find the cross-section stiffness that helps to restrain warping and a second to
apply that stiffness as a resisting foundation in approximating expected warping of the top
flange. The methods are shown to be the same for a series of known cross-sections. The
approach would be unchanged for more complex cross-sections and thus provides a simple
analysis alternative to the current prescriptive expressions.

The 3D shell finite element model in ABAQUS predicts a stiffer response (less warping
displacement) than the AISI S310/DDM method. Overall the AISI S310/DDM stiffness
correlates reasonably with experiments (O'Brien, et al., 2017) suggesting that the approach is
well founded. However, while the AISI S310/DDM warping model is mechanically inspired, it is
not an accurate representation of the actual behavior. The foundation stiffness and the boundary
conditions are very rough approximations of the actual condition. The selection of the top flange
and tributary width of web is also empirical. The model includes some of the key mechanics
associated with deck warping, but appears to not be an accurate representation of the actual 3D
behavior. This is consistent with findings in (Bian & Schafer, 2017).

Future studies could consider different boundary conditions and loading cases in the shell FE
models to potentially find warping displacements that agree more with the values giving in the
Specification and to better understand what assumptions there were made in creating the warping
coefficients. The most obvious next step in determining in necessary improvements is to use the
more mechanically correct estimations of warping and compare them with the available test data,
as summarized in (O'Brien, et al., 2017), and from this determine if the predicted deflections are
improved. If yes, then changes may be warranted. If no, then it may need to be recognized that
the current expressions approximate more than just warping deformations.

8. Conclusions

In this paper the current formulation used in design for determining the shear flexibility of
profiled steel panels caused by warping displacement at the ends are investigated and new
methods to find this flexibility presented. The formulas for warping flexibility in the American
Iron and Steel Institute (AISI) S310 Specification are for one type of diaphragm corrugation,
with no web or flange stiffeners and replication of the formulas for improved cross-sections are
not supported. It is shown herein that the AISI S310 formulation for warping deformation is
mechanically equivalent to a beam element model of the top flange (length equal to the deck
span length) supported by springs which are developed from exercising an additional beam
element model of the cross-section profile to find the spring stiffness. This model can readily be
extended to other deck profiles. Additional studies were conducted to examine the validity of the
AISI S310 warping predictions using ABAQUS shell finite element models. The shell models
predict considerably less warping deformation than the AISI S310 approach. Additional study is
needed to resolve this discrepancy and possible future research is discussed herein.
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Appendix

Spring Constants from AISI S310 Appendix 1

Three flexibility expressions for a single simple supported corrugation (also found in AISI S310
Appendix 1 Eq. (1.4-8)-(1.4-10)):

D3
El &, = ?" 2w + 3f) (Ala)
2
El&,, = % (s (4% = 2ef + f2) + d? (3f + 2w)) (Alb)
D2 EI&,

(Alc)

El &, =?d(2w+3f) =—

The spring constants are the stiffness of the webs supporting the flanges, using the flexibilities
and the principle of superposition, the displacement of the corrugation can be determined. The
fastener layout comes into play to set up the relations between forces and displacements. For
fasteners between each corrugation, a single corrugation is considered, see Figure 10, where
forces are applied at node 1 and 2, note that the right support is now a pin support without
rollers, which gives a displacement A; = 0:

) =22 &2]l%] (A2)
o F
—
1 @i

—-— —
Figure 10: Single flute case, fastener between each corrugation, the forces and reactions are illustrated.

Solving these linear equations, the displacement and the corresponding spring stiffness can be
found for a single corrugation:
2
511
F 511

k = —
“ AZ 522511 - 5122

(A3b)

For two flutes between fasteners, two corrugations are connected. A load F is applied at the two
top flanges and a load a'F at the bottom flange, see Figure 11, this load is divided evenly
between the two corrugations, where a’ = 2e/f is the equivalent force multiplier for the lower
flange:

Al e o] [2F]
ml= e 522]_ 2 (A%)
Al e o] [2F]
A4] N [512 522] | %. | (A4b)
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ki =—=—"—"557—
A a’ (A5a)
2 &t > $12
a'F a’
ky, = = 7 (A5b)
A a
$12 + 7511
‘2 f“ A F
— —
. o r

Figure 11: Double flute case, fastener between very other corrugations. The forces and reactions are illustrated.

Three flutes between fasteners, means three corrugations are connected and a load F is applied at
the three top flanges and a load a'F at the two bottom flanges. The middle corrugation is only
subjected to a load at the top flange and reaction forces, additionally it also feels the deformation
from the first corrugation. The first and last corrugations are the same, with the same loads.

F
A 3 & - B
nl=le gzt (AG2)
F
F
23] _ $11 512] ~>|+a, (A6h)
4 $12 €22 F
F
A1 16 EntlE s oF
)=l gzt (A6c)
F
I F 1
t3 = 7 =
A , 1 (A7a)
2 fzz"‘(a +§)512
I a'F a’
b3 = =
A 1 (A7h)
1 512+(a +§)511
I a'F a'
tc3 — =
A, 1 1 (ATc)
7512 + ¢ + (a +7) $11
2ok 4o Gy I
NS\
3 F T el 3 - _. 5 0 |

a' a'

Figure 12: Triple flute case, fastener between very third corrugations. The forces and reactions are illustrated.

Same procedure can be applied on more flutes between fasteners.
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